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Abstract

Reactions that have an initial acceleratory period are common in both organic and inorganic sys-
tems. The Šesták–Berggren equation, dx/dt= –kxn(1–x)m[–ln(x)]p, with p set to zero (also called the
extended Prout–Tompkins (PT) equation) is an excellent empirical kinetic law for many of these
systems. In this work, it is shown to fit both isothermal and constant heating rate pyrolysis data for a
well-preserved algal kerogen in a petroleum source rock and two synthetic polymers (polycarbonate
and poly-ether-etherketone), dehydration of calcium oxalate monohydrate, decomposition of ammo-
nium percholorate, and diffusive release of gas implanted in materials. Activation energies derived
by non-linear regression to multiple experiments are consistent with those derived by simple iso-
conversional methods. Errors caused by misapplication of first-order kinetics to single-heating-rate
data are discussed briefly.

Keywords: nucleation kinetics, Prout–Tompkins equation, sigmoidal kinetics, thermal decomposi-
tion kinetics

Introduction

Our arrival at a version of the Šesták–Berggren kinetic law [1] was an indirect one.
Coming from the application world of fossil energy, most of the reactions we initially
investigated were either pseudo-first-order reactions or more complex systems that
could be approximated by a system of independent parallel first-order reactions
[2, 3]. Later, however, we found geopolymers that had non-isothermal reaction pro-
files narrower than a first-order reaction and that had an acceleratory phase similar to
that of linear polyolefins [4]. The literature for polymer decomposition kinetics was
full of potential kinetic rate laws for various limits of initiation and branching [5], but
we ultimately settled on what we eventually recognized as an extended PT model [6].
We did so prior to penetrating the extensive, complex, and often contradictory ther-
mal analysis literature, for basically the same reason as Prout and Tompkins [7]: it
seemed to have the correct functional form to fit our data.

The general form we chose was

dx/dt= –kxn (1–qx)m (1)
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where x is the fraction remaining (x=1–a in the conventional thermal analysis litera-
ture, where a is the fraction reacted). The parameter m was used explicitly because
we wanted a functional form that would have a limit of a first-order reaction, if appro-
priate, during non-linear regression fitting to multiple reaction profiles, as had been
our practice since the mid 1980s. The parameter q was added to account for a
non-zero initial reaction rate, since both our analysis and application software numer-
ically integrates the reaction rates to calculate extents of reaction.

At first, we held n=1 during this regression analysis, because all the kerogens we
initially investigated had non-isothermal profiles with essentially the same shape as a
first-order reaction; m affects the width, but not the shape, of a reaction profile at con-
stant heating rate. Later we dealt with a broader range of materials, for which some
had a profile skewed to high temperature, and the parameter n provided the means to
fit those profiles. At about the same time, we uncovered the paper of Šesták and Berg-
gren [1], which provided a stronger link between our empirical approach to Eq. (1)
and the thermal analysis literature.

Unlike most workers, we measure chemical kinetic parameters to make predic-
tions of reaction extents under conditions of practical interest, so we constantly test
the ability of our kinetic models to extrapolate over wide time-temperature condi-
tions. Such tests provide a reality check for the often-academic exercise of Arrhenius
parameter derivation. This work found the Šesták–Berggren equation with p=0 (or ei-
ther the extended Prout–Tompkins equation or nth-order nucleation reaction, as we of-
ten call it) to be a very powerful tool for a wide range of organic and inorganic ther-
mal decomposition reactions.

Avrami–Erofeev vs. extended Prout–Tompkins

Those attempting to model reactions variously known as nucleation, auto-catalytic,
acceleratory, or sigmoidal historically faced two basic choices: the Prout–Tompkins
model:

dx/dt= –kx(1–x) (2)

or the Avrami–Erofeev model:

dx/dt= –m´kx[–ln(x)]1–1/m’ (3)

The Šesták–Berggren model:

dx/dt= –kxn(1–x)m[–ln(x)]p (4)

contains both Eqs (2) and (3) as limits for various combinations of 0 and 1 for m, n,
and p. Obviously, m´=1/(1–p). As a practical matter, we have found, in agreement
with comments in the literature, that setting either m or p to zero gives very similar re-
sults. A few examples are shown in Fig. 1. Consequently, we have ordinarily set p=0
and used non-linear regression to determine optimal values of n and m. These param-
eters have allowed us to fit all experimental data to the precision we thought was ap-
propriate for uses we envisioned.
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Extended Kissinger equation

The Kissinger equation [8] was originally derived for first-order reactions and shown
to be exact for nth-order reactions:

ln( / ) / ln( / )maxβ T E RT AR E
max

2 =− + (5)

where β is the heating rate. Chen, Gao, and Dollimore [9] subsequently showed that it
holds more generally if the right hand term is replaced with ln(ARf´(a)/E), where
f´(a) is the derivative with respect to a, and f(a) is defined in

da/dt=kf(a) (6)

As long as Tmax occurs at constant conversion, f´(a) is merely a constant that can
be absorbed into the frequency factor. Even more generally, the Kissinger equation
has been found both numerically [10] and analytically [11] to work well for systems
of parallel reactions having a distribution of activation energies.

In anticipation of one new application of the Šesták–Berggren formalism pre-
sented here, the Kissinger equation also works for diffusive release upon heating of
gas implanted at a specific initial depth in a material [12]. The evolution profile for
that case is [13]

− = − −









d

d

x

t

c

z D
E RT

D z

0

3 2
0

1 2

2

02 4

δ
π

δ
/ /( )

exp( / )exp (7)

where d is the implantation depth, the diffusion constant is given by D0exp(–E/RT),
and z is the kinetic integral
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(8)
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Fig. 1 Comparison of the extended PT (top) and Avrami–Erofeev (bottom) equations
for parameter ranges typical of well-preserved kerogens and linear polyolefins



For a constant heating rate, differentiation of, and further manipulation of,
Eq. (7) gives

ln( ) / ln( / )βT E RT D E
max max

2
0

22≈− + d (9)

Several workers [4, 8, 10, 14], including Kissinger, have reported correlations
between reaction order and the reaction profile shape at a constant heating rate. We
previously reported correlations between the relative profile width (WR–the ratio of
the measured profile width to that calculated from approximate values of E and A de-
rived from the Kissinger equation) and the width of the Gaussian distribution of ener-
gies in a parallel-reaction model. These correlations were used to provide initial
guesses for a subsequent non-linear regression refinement of the kinetic parameters.
Likewise, we developed similar correlations for m and n in Eq. (4) using profile width
and asymmetry.

From the reaction rate profile at a constant heating rate, the value of n even for
non-zero m can be estimated to within about 20% by the simple relationship

nasym=(asym/0.64)0.78 (10)

where asym is the ratio (Thigh–Tmax)/Tmax–Tlow) and Thigh and Tlow are the temperatures at
which the profile crosses 25% of the maximum reaction rate. We have used different
algorithms at various times to estimate the parameter m from the profile width.
Kinetics98 v. 4.53 uses

m=WR
1.92/nasym (11)

which works better for n>2 than the algorithm used earlier [16]. Also, we initially
used APT≈AKissinger/(1–m) for materials having m<0.5, but this equation fails for m
near 1. More recently, we have used

APT≈AKissinger/(1–m+0.17m2) (12)

It must be emphasized that the purpose of these algorithms is to provide reason-
able initial guesses for non-linear regression analysis, not to provide the ultimate in
accuracy or rigor. Even so, they are far superior to the single heating-rate algorithms
still used by some.

Examples

Oil generation

Our first application of a simplified version of the Šesták–Berggren equation, which
we called a three-parameter model (A, E, and m), was for petroleum source rock
kerogens [6]. The original sample for which we found both an acceleratory phase dur-
ing isothermal pyrolysis in a fluidized bed and a narrow reaction profile is a partially
mature algal source rock from the Uinta Basin, Utah (2557 m depth in the Brotherson
1-23B4 well) [4]. The reaction rate was measured by flame ionization detection of
evolved hydrocarbons. Re-analysis of this sample was not reported in our first appli-
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cation of the ‘3-parameter’ Prout–Tompkins equation to petroleum source rocks, so it
is now reported in Table 1.

The half-width of the reaction profile is only 73% of that of a first-order reaction
having an activation energy compatible with the shift in Tmax with heating rate, but the
profile asymmetry is about the same as a first-order reaction. Our simple correlations,
denoted as extended Kissinger analysis, estimate a reaction order of 0.97 and a nucle-
ation order of 0.44. Fixing n=1, a non-linear regression fit to the profile (Fig. 2) finds
values of A and E very close to those of the extended Kissinger analysis. The fitted
nucleation order is a little lower, due to the broader base of the reaction profile caused
by volatilization of some extractable organic matter at low temperature and second-
ary char pyrolysis at the high temperature. As expected, the residual sum of squares
of the non-linear regression parameters is substantially lower than that calculated
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Fig. 2 Fit of the 3-parameter Prout–Tompkins model to hydrocarbon evolution from a
well-preserved algal kerogen heated at 3.6, 14, and 50°C min–1

Table 1 Results for various kinetic analyses of a well-preserved kerogen from the Brotherson
1-23B4 well in the Unita Basin, Utah

Method
Standard
Kissinger

Extended
Kissinger

‘3-parameter’
NLR

Šesták–
Berggren

NLR

Single
heating rate

NLR

Average WR 0.73

Average asym 0.62

A/s–1 1.49·1014 2.52·1014 2.61·1014 2.38·1014 6.32·1018

E/kJ mol–1 231.5 231.5 232.7 232.5 296.4

m 0 0.44 0.27 0.24 0

n 1 0.97 1 0.95 1

RSS of rates 5.39a 1.13a 0.207 0.202 1.59a

Tmax (3°C/m.y.) 158°C 159 159 159 202
aCalculated for parameters fixed from independent analysis



from the Kissinger analysis parameters. Adding reaction order to the non-linear re-
gression improves the quality of the fit very little.

In the last column of Table 1, parameters are given for fitting a first-order reac-
tion to the middle section of the reaction profile. Freed from the constraints of the
heating rate, A and E increase compensatingly to give a good fit to the single profile.
However, when those parameters are used to calculate all three profiles, the agree-
ment is no longer good in general, because Tmax is overestimated for the slow heating
rate and underestimated for the high heating rate. This demonstrates the futility of
single-heating-rate fits for any predictive use. Also shown in the last row are the pre-
dicted temperatures for the maximum oil evolution rate at a geological heating rate.
The single-heating-rate fit predicts oil generation at temperatures significantly higher
than observed.

Polymer decomposition

The acceleratory or autocatalytic character of linear polymer pyrolysis was observed
nearly 50 years ago [15]. The profile shapes of the nucleation models shown in Fig. 1
are very similar to those of random degradation and volatilization of high polymers.
We previously showed [16] the ability of the extended Prout–Tompkins model to fit
multiple-heating-rate, hydrocarbon-evolution curves of polyethylene, polydimethyl-
enenaphthalene, polystyrene, polysulfone, and polyvinylacetate. A fit to similar data
for polycarbonate is shown in Fig. 3. The extended Kissinger analysis gave
E=209.4±6.0 kJ mol–1, relative profile width of 0.50, and asymmetry of 0.70, yielding
initial guesses of A=1.15·1012 s–1, m=0.75, n=1.1 for the extended Prout–Tompkins
model. The final non-linear regression parameters are given in the caption.

Another example of the power of the extended PT model comes from Nam and
Seferis [17], who report both isothermal and non-isothermal TG measurements of
polyether-ether-ketone (PEEK). After acknowledging the general functional form of
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Fig. 3 Fit of the extended Prout–Tompkins model (Šesták–Berggren with p=0) to py-
rolysis product evolution from polycarbonate heated at 5.3, 16, and 58°C min–1.
The NLR parameters are A=3.47·1012 s–1, E=212.3 kJ mol–1, m=0.69, and n=1.17



Eq. (1) with p=0, they derive a related equation for a sequence of a first-order, revers-
ible dissociation reaction followed by a PT diffusive removal of products. They then
provided a weighted sum of these two contributions to the observed reaction rate,
yielding

–dx/dt=k[y1x+y2x(1–x)] (13)

where y1 and y2 are the relative masses of chemical reaction and diffusion contribu-
tions to the overall rate and sum to one. While they analyze their data using an inte-
grated form of Eq. (13), simple rearrangement shows

–dx/dt=kx(1–y2x) (14)

which equals Eq. (1) with n and m equal to one and y2=q.
The TG data of Nam and Seferis for the main stage of PEEK decomposition

were digitized and analyzed with Kinetics98 [18]. Kinetic parameters from the appli-
cation of Eq. (1) are given in Table 2. The agreement is very good among our approx-
imate extended Kissinger method for fractions reacted and non-linear regression
analysis of non-isothermal, isothermal, and all data. The final column gives results
for m, n, and q fixed to the values used by Nam and Seferis. The resulting A and E are
close to both their values and our values obtained by finding optimal values of m, n,
and q. A comparison of measured and calculated fractions reacted is given in Fig. 4.
The agreement is excellent.

The polycarbonate and PEEK examples emphasize two important points. The
PEEK data show that the same kinetic model will usually work for isothermal and
non-isothermal data over a similar wide range of time and temperature if the data is
good and the kinetic analysis is done properly. Second, if improperly analyzed, erro-
neous kinetic parameters will result: if a single heating rate experiment is fitted to a
first-order reaction, activation energies of 387 and 673 kJ mol–1 are obtained for poly-
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Table 2 Kinetic parameters from analysis of literature data for thermal decomposition of PEEK

Method
Extended
Kissingera

Constant
HR only

NLR

Isothermal
only NLR

All data
NLR

All data
optimum q

All data:
m, n, q
fixed

Avg. WR 0.36

Avg. asym 0.62

A/s–1 5.30·1012 4.74·1012 9.09·1012 2.38·1014 7.87·1012 8.91·1012

E/kJ mol–1 236.7 237.4 241.7 240.6 240.6 240.6

q 0.99 0.99 0.99 0.987 0.9785

m 1.00 0.44 0.87 0.86 0.90 1.00

n 0.45 0.97 0.92 0.89 0.92 1.00

RSS of α 5.4·10–3 2.5·10–2 4.33·10–2 4.32·10–2 4.5·10–2

aBased on correlations for WR=relative T80%–T20% and asym=(T90%–T50%)/(T50%–T10%)



carbonate and PEEK, respectively, with correspondingly high frequency factors. The
former energy is higher than expected for a chain reaction, and the latter is substan-
tially higher than the strengths of C–C and C–O bonds. These high parameters are
caused by forcing the A–E pair to compensate for the narrow reaction profile, instead
of incorporating a parameter related to the acceleratory behavior. The effects of simi-
lar erroneous kinetic analyses are seen in high activation energies reported by some
workers [19, 20] for thermal decomposition of cellulose and starch that were obtained
by fitting a first-order reaction to a heating rate experiment. In contrast, the
3-parameter Prout–Tompkins model fits both multiple heating rate and isothermal
experiments with activation energies similar to each other but significantly lower
than from the single-heating-rate first-order fits [21].

Mineral dehydration

Calcium oxalate monohydrate is often used as a calibration standard for thermal anal-
ysis, but the literature contains substantial variation for both the temperatures and ki-
netic parameters for its decomposition [22 and references therein]. Christy et al. [22]
report a careful study of the kinetics of the dehydration reaction by Fourier transform
infrared spectrometry (FTIR). A particularly important result was that the dehydra-
tion reaction is not single step: there are two inequivalent crystal sites for the water,
and they have different kinetics. Some of their data are reanalyzed here to obtain a
better kinetic model.

Results from Friedman and extended Kissinger iso-conversional kinetic analysis
of the disappearance of infrared absorbance bands for hydration water at 0.5 and
5°C min–1 are given in Tables 3 and 4. The activation energy is in the 90–110 kJ mol–1
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Fig. 4 Comparison of measured and calculated fractions reacted for decomposition of
PEEK at both isothermal and constant heating rate conditions. The data were fit
simultaneously, although they are shown separately for clarity



range, and the reaction profile is about 80% as wide as a first-order reaction and
skewed slightly to low temperature relative to a first-order reaction. A superficial in-
terpretation would be an nth-order reaction, which would represent a receding inter-
face model. However, Christy et al. showed that differentiation of the reaction profile
revealed the clear presence of two overlapping reaction peaks, which is not consistent
with a single nth-order reaction. Instead, a fit of the fraction reacted data to two paral-
lel nucleation reactions is more consistent with the spectroscopic data. The fit itself
and the differentiated data are shown in Fig. 5, and the kinetic parameters are listed in
Table 4. While this model is not definitive, because it does not consider the possible
inter-conversion between the two sites, it does demonstrate that all previous kinetic
analyses based on single-step models are inadequate.

Energetic materials

The decomposition of ammonium perchlorate has been studied extensively, and it is
generally agreed that the decomposition has two stages: a sigmoidal decomposition
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Table 3 Friedman kinetic analysis of the dehydration reaction of calcium oxalate monohydrate as
monitored by FTIR at 0.5 and 5°C min–1

1–x ln(Axn) A(n=1) E/kJ mol–1

0.1 24.65 5.64·1010 98.8

0.2 19.18 2.68·108 82.4

0.3 23.66 2.68·1010 97.2

0.4 26.09 3.55·1011 105.3

0.5 23.50 3.20·1010 97.6

0.6 22.31 1.22·1010 93.7

0.7 25.65 4.60·1011 104.4

0.8 22.77 3.87·1010 95.6

0.9 19.00 1.78·109 85.0

Table 4 Kinetic analysis by the extended Kissinger method and nonlinear regression to an nth-or-
der and parallel nucleation reaction models

Method
Extended
Kissinger

nth-order NLR
Parallel reaction

s #1(50%) #2(50%)

Average WR 0.79

Average asym 0.63

A/s–1 6.39·1011 5.11·1010 7.30·1011 1.39·1011

E/kJ mol–1 107.5 100.0 102.8 98.1

m 1.00 1.00 0.5 1.0

n 0.54 0.40 1.0 1.0

RSS of α 7.0·102 2.4·102



stage and a sublimation stage. Even so, there are still substantial variations in the re-
ported kinetic parameters. Data for ammonium perchlorate decomposition were pro-
vided through the ICTAC kinetic analysis project [23].

The iso-conversional Friedman kinetic analysis, given in Table 5, provides an
initial picture of the activation energy for this reaction. The trends found are very
similar from isothermal and constant heating rate data, except that the isothermal data
has an initial drop in the activation energy, in agreement with a similar analysis re-
ported earlier by Vyazovkin and Wight [24]. During most of the first 30% of the reac-
tion, the E is about 80 kJ mol–1. During the last 70% of the reaction, the activation en-
ergy is about 115 kJ mol–1. The preexponential factors are given for a qualitative indi-
cation, but they are not quantitatively valid due to the first-order approximation.
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Fig. 5 Fit of the FTIR fraction reacted data for dehydration of calcium oxalate
monohydrate at 0.5 and 5°C min–1 to two parallel nucleation reactions (top), and
the differentiated data and calculated rates (bottom)

Table 5 Friedman-type isoconversional kinetic analysis of isothermal and non-isothermal de-
composition of ammonium perchlorate

1–x
Isothermal data Non-isothermal data

A(n=1) E/kJ mol–1 A(n=1) E/kJ mol–1

0.1 8.9·106 107.3 2.9·104 79.4

0.2 4.9·104 83.9 4.3·104 82.0

0.3 1.5·103 71.8 1.4·105 91.9

0.4 8.7·107 124.5 1.1·107 115.4

0.5 8.2·107 123.6 6.4·106 111.9

0.6 2.8·107 117.8 8.8·106 112.8

0.7 2.1·107 115.1 1.7·107 115.2

0.8 6.2·108 128.8 7.6·106 109.3

0.9 8.7·106 107.4 6.6·106 106.4



With these starting estimates, non-linear regression was used to fit a paral-
lel-reaction model (nth-order nucleation and nth-order reactions) to both the isothermal
and non-isothermal data. The results of these fits are shown in Table 6. Only a partial
extended Kissinger analysis (based on rates) is given, because of the overlapping
peaks. However, from a combination of the measured profile widths and the visual
asymmetry, the first peak must be a nucleation reaction with n>1, and the second re-
action is an nth-order reaction with n<1 and m about zero. Consequently, m was fixed
at 1.00 and 0.00, respectively, for the two reactions, for both the isothermal and
non-isothermal fits. Preliminary analysis found a minimum at about q=0.995 for the
non-isothermal reaction, so the final convergence used that value to determine the
masses, along with A, E, and n for both reactions. Observed and calculated curves
track each other within the width of conventional plotting symbols, for both the iso-
thermal and non-isothermal data. [25]

A significant question is whether the two reactions are indeed concurrent or in-
stead sequential. In fact, why are there two reactions in the first place? Boggs and
Kraeutle [26] state that their photographs clearly show the effect of enhanced subli-
mation in vacuum, which occurred simultaneously with decomposition. This seems
to support the concurrent reaction model, although the change in surface area during
the reaction could change the relative proportions of decomposition and sublimation.
Several authors [26–28] say the decomposition is catalyzed by impurities, and ul-
tra-high-purity ammonium perchlorate shows only 9% disappearance via decomposi-
tion [26]. One possible explanation is that the catalytic impurities are gradually poi-
soned by the decomposition process, leaving only sublimation during the last portion
of the reaction. The initial drop in activation energy for isothermal conditions might
be explained by sublimation being dominant during the first portion of the reaction
before the decomposition reaction gets going, although test calculations indicate that
an initiation parameter of 0.999 or greater would be required. Alternatively, perhaps
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Table 6 Non-linear regression analysis of ammonium perchlorate decompostion data

Method
Extended Kissingera Isothermal data Non-isothermal data

peak 1 peak 2 peak 1 peak 2 peak 1 peak 2

Average WR 0.45 0.57

Average asym (high T) (low T)

A/s–1 3.2·107 2.8·104 2.96·104 1.53·106 1.97·107 2.27·106

E/kJ mol–1 98.8 116.0 68.9 107.0 95.5 108.3

Wt. frac. 0.24 0.76 0.25 0.75

q 0.995 0.995

m ~1 ~0 1.00 0.00 1.00 0.00

n >1 <1 1.31 0.14 1.83 0.25

RSS of α 2.23·10–2 3.15·10–2

aOnly a partial extended Kissinger analysis (based on rates) is given because of the overlapping peaks



the initial high activation energy for the isothermal case is due to a more dominate
impact of the nucleation process.

Even though the mechanisms mentioned cannot be adequately tested with only
mass loss data, the utility of the empirical kinetic model can be tested against DSC
data kindly provided by Vyazovkin (Univ. of Utah). The two reactions were summed
with the assumptions that the decomposition reaction is exothermic and that the evap-
oration reaction is endothermic. The baseline heat flow was assumed to be propor-
tional to remaining mass. A comparison of the data with both the isothermal and
non-isothermal kinetics is shown in Fig. 6. The non-isothermal calculation has been
shifted up 5°C to match both the isothermal kinetics and the non-isothermal DSC
curve. Perhaps this indicates a slight temperature calibration error in the non-iso-
thermal TG data, since the isothermal TG and non-isothermal DSC data agree.
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Fig. 6 Comparison of measured DSC data at °C min–1 with heat flow data calculated
from the isothermal and non-isothermal TG kinetics. The spike at 241°C is an
orthorhombic-cubic phase transition

Fig. 7 Fit of synthetic data at 1 and 10°C min–1 for diffusive release of hydrogen from
boron carbide to extended PT model



Diffusive release of implanted gas

First and nth-order rate laws are frequently used to analyse temperature programmed
desorption data, sometimes using data at only one heating rate [29]. In the case of im-
planted gas, this procedure would seem to be doubly risky, as there should be an in-
duction time before the first gas reaches the surface. Equations (7)–(9) show that mul-
tiple heating-rate data can be treated by a Kissinger-type equation to obtain the
preexponential factor and activation energy, but this still does not address the induc-
tion period issue.

We recently showed [12] that the extended PT formalism is one way to deal with
this induction time. One example for synthetic data mimicking hydrogen implanted at
a depth of 0.4 µm in boron carbide is shown in Fig. 7. The initiation parameter q was
set at 0.999999, because little improvement occurred as q got closer to unity. Table 7
shows the results from this and other fits at other implantation depths, showing that
apparent frequency factor does vary with the square of the implantation depth. The
activation energy of 70 kJ mol–1, used to create the synthetic data set, is recovered by
the extended PT formalism.

Conclusions

In the diverse set of examples presented here, both polymeric and inorganic, the
Šesták–Berggren equation with p=0 works very well for correlating kinetic data over
wide ranges of temperatures and pressures for reactions having sigmoidal reaction
characteristics. Essentially the same rate parameters work well for isothermal and
constant-heating-rate experiments. Consequently, it can be used with some confi-
dence to extrapolate reaction rates outside the range of calibration. The Šesták–Berg-
gren model also suggests some qualitative aspects of reaction mechanism, but one
should be careful not to over interpret the meaning of the parameters without supple-
mentary observations (e.g., microscopy, evolved gas analysis).

In contrast, a first-order reaction may fit data from a single heating rate well, but
the activation energy for nucleation reactions will ordinarily be significantly higher
than the true value, and the frequency factor will vary with the heating rate. Such ki-
netics are useful for neither extrapolation nor mechanistic interpretation and should
not be considered acceptable practice.
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Table 7 Non-linear regression parameters derived from fitting an extended PT model to synthetic
diffusive evolution of hydrogen implanted in boron carbide at various depths

Parameter 0.2 µm 0.4 µm 0.6 µm

E/kJ mol–1 70.2 70.2 70.0

A/s–1 9.6·103 2.45·103 1.065·103

Reaction order, n 3.64 3.69 3.73

Nucleation order, m 0.45 0.45 0.46



This work was performed under the auspices of the U. S. Department of Energy by the Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48. The DSC data for ammonium
perchlorate was provided by S. Vyazovkin of the University of Utah.
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